Решить линейное уравнение методом Гаусса онлайн решателем

Как решить систему линейных уравнений методом Гаусса по математике

Карл Фридрих Гаусс - немецкий математик, механик, физик, астроном и геодезист. Он считается одним из величайших математиков всех времён, «королём математиков». И даже избирался иностранным почетным членом Петербургской академии наук. Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры, теории чисел, дифференциальной геометрии, математической физики, теории электричества и магнетизма, геодезии и многих разделов астрономии. Метод Гаусса является самым действующим способом решения систем линейных уравнений, поскольку ни метод Крамера, ни матричный метод не работают в условиях, когда система имеет бесконечное количество решений или несовместна. Однако последовательное исключение неизвестных, что и заложено в основу метода Гаусса, приведет к решению любых линейных систем.

решение линейных уравнений методом Гаусса

Так же читайте нашу статью "Решить логарифмическое уравнение онлайн решателем"

Решим следующую систему линейных уравнений методом Гаусса:

\[\left\{\begin{matrix} x_1+2x_2+3x_3-2_x4=1\\ 2x_1-x2-2x_3-3x_4=2\\ 3x1+2x_2-x_3+2x_4=-5\\ 2x_1-3x_2+2x_3+x_4=11 \end{matrix}\right.\]

Сделаем расширенную матрицу:

\[\begin{pmatrix} 1&2&3&-2\\ 2&-1&-2&-3\\ 3&2&-1&2\\ -2&-3&2&1 \end{pmatrix}\sim \\ \sim \begin{pmatrix} 1&2&3&-2\\ 0&-5&-8&1\\ 0&-4&-10&8\\ 0&-7&-4&5 \end{pmatrix}\]

Используя 2 уравнение, избавимся от переменной \[x_2\] в последующих уравнениях:

\[\begin{pmatrix} 1&2&3&-2\\ 0&-5&-8&1\\ 0&-4&-10&8\\ 0&-7&-4&5 \end{pmatrix}\sim \\ \sim \begin{pmatrix} 1&2&3&-2\\ 0&1&-2&7\\ 0&-4&-10&8\\0&-7&-4&5 \end{pmatrix}\]

Выполним исключение переменной \[x_2\] из 3 и 4 уравнений. К 3 строке добавим 2, умноженную на \[\frac{1}{4}, \] а к \[4 - 2,\] умноженную на \[\frac{7}{1}. \]

\[\begin{pmatrix} 1&2&3&-2\\ 0&1&-2&7\\ 0&-4&-10&8\\ 0&-7&-4&5 \end{pmatrix}\sim \\ \sim \begin{pmatrix} 1&2&3&-2\\ 0&1&-2&7\\ 0&0&-18&36\\ 0&0&-18&54 \end{pmatrix}\]

Теперь с помощью третьего уравнения исключим переменную \[x_3\] из четвёртого уравнения. Для этого к четвёртой строке прибавим третью, умноженную на \[-\frac{18}{18}=-1.\] Получаем расширенную матрицу трапециевидной формы.

\[\begin{pmatrix} 1&2&3&-2\\ 0&1&-2&7\\ 0&0&-18&36\\ 0&0&-18&54 \end{pmatrix}\sim \\ \sim \begin{pmatrix} 1&2&3&-2\\ 0&1&-2&7\\ 0&0&-18&36\\ 0&0&0&18 \end{pmatrix}\]

Заданная система эквивалентна, таким образом, следующей:

\[\left\{\begin{matrix} x_1+2x_2+3x_3-2x_4=1\\ x_2-2x_3+7x_4=-8\\ -18x_3+36x_4=-40\\ 18x_4-7 \end{matrix}\right.\]

Основываясь на полученных данных, делаем вывод, что полученная и данная системы - совместны и определённы. Искомое решение находим "с конца". Из четвёртого уравнения имеем

\[x_4=-\frac{7}{18}.\]

Это значение подставляем в третье уравнение системы и получаем

\[-18x_3+36(-\frac{7}{18})=-40,\]

откуда

\[x_3=\frac{13}{9}.\]

Далее, подставляем значения \[x_3\] и \[x_4\] во второе уравнение системы:

\[x_2=2\frac{13}{9}+7(-\frac{7}{18})-8,\]

т.е.

\[x_2=-\frac{43}{18}.\]

Наконец, подстановка значений \[x_2, x_3, x_4\] в первое уравнение даёт:

\[x_1+2(-\frac{43}{18})+3(\frac{13}{9})-2(-\frac{7}{18})=1,\]

Получаем:

\[x_1=\frac {2}{3}.\]

Ответ:

\[(x_1=\frac {2}{3}, x_2=-\frac{43}{18}, x_3=\frac{13}{9}, x_4=-\frac{7}{18}).\]

Где можно решить линейные уравнения методом Гаусса онлайн?

Решить систему уравнений вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!