Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Все кубические уравнения с действительным коэффициентом имеют хотя бы один действительный корень. Другие корни либо также действительны, либо комплексно сопряженная пара. Существует много видов кубических уравнений, каждый из которых решается в зависимости от исходных данных.
Так же читайте нашу статью "Решить рациональное онлайн решателем"
Для решения данного рода уравнений необходимо знать формулу сокращения умножения суммы кубов:
\[ (a+b)^3=a^3+3 \cdot a^2 \cdot b+3 \cdot a \cdot b^2+b^3\]
Допустим, дано уравнение следующего вида:
\[\sqrt 2x^3-3=0\]
Первым делом преобразуем данное уравнение к виду:
\[x^3-\frac{3}{\sqrt 2}=0\]
Для решения применим формулу сокращенного умножения разности кубов. Получим:
\[ (x- \frac{\sqrt[3]3}{ \sqrt[6]2})(x^2+ \frac{ \sqrt[2]3}{ \sqrt[6]2x}+ \frac{\sqrt[3]9}{2})=0\]
Находим из первых скобок \[ x= \frac{\sqrt[3]3} {\sqrt [6]2}.\] Во вторых скобках нет действительных корней, поскольку его дискриминант отрицательный. Поэтому ответов будет:
\[ x= \frac{\sqrt[3]3} {\sqrt [6]2}\]
Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.